VBossAPI v2.0 rev 1.1 Reference Manual
Copyright © 1995, Greg Truesdell

CIS ID 1 74131,2175
Internet 1 74131.2175@compuserve.com

VBossAPIL.DLL is a Visual Basic language extension module providing capabilities useful when
building script and language compilers and interpreters. This library is in use by companies and
individuals in Canada, Europe and The United States.

This DLL is designed for, and requires, Visual Basic for Windows.

Help File Updated: 95.11.10
Contents

Getting Started - Read this First!
Constants
Copyright

History of Changes
Introduction

Limitations

Registration

Using SPOOK, the VBossAPI Spy Utility
Support and Utility Functions

Token Related Functions

Variable Data Types
Word Related Functions

Reference

Getting Started

With Release 2.00, you need to handle a few extra steps to insure proper operation of VBossAPI.
This section describes the three special calls required to initialize and exit the library.

The Very FIRST Step

To begin, you must call CreateScrObject(). This function initializes the library to support the current

instance of the program you are running. It returns an integer handle that you must use when
exiting your program.

First Step

Global Script$

Form Load ()
Script% = CreateScrObject()
If Script%$ = -1 Then

Print "Sorry, No enough memory to continue"
End

End If

End Sub

Registering the Library with your Registration Key

When you register the library you receive a personal registration key. The next step would be to use
the RegisterVBossAPI function to disable the shareware panel(s).

Register the Library

If Not RegisterVBossAPI(Name$, Key$) Then

Print "Sorry, Incorrect Registration Information"

End If

The program continues anyway
A\l

Final Step - Usually in the main form's UnLoad event.

Finally, you must destroy the script object created in Step 1. You must use the integer handle
returned above (Script%) as the argument to the DestroyScrObject procedure:

' All Done

Form UnLoad ()

DestroyScrObject Script$

End Sub

Constants

These constants can be found in VBossAPI

AddKeyword() and related functions:

.BAS. Check that file for lastest additions as well.

! AddKeyword () Return Codes

1

Global Const AKW_NO MORE ROOM = -1 'no more keyword space

Global Const AKW_INVALID CHAR = -2 'invalid character in keyword

Global Const AKW DUPLICATE KEYWORD = -3 'duplicate keyword

Global Const AKW _KEYWORD TOO LONG = -4 'keyword too long

Global Const AKW_INVALID TOKEN = -5 'invalid token (keycode) wvalue
'- negative numbers not allowed

Global Const AKW_TYPE MISMATCH = -6 'AddVariable () type mismatch

Global Const AKW OVERFLOW = -7 'AddVariable () overflow

A\l

! AddKeyword () Limits

1

Global Const AKW _MAX KEYWORD LEN = 16 'maximum keyword length

Global Const AKW _MAX KEYWORDS = 256 'maximum number of keywords

AddVariable() and related functions:

Variable Type Constants
Global
Global
Global
Global
Global
name

Global
name

Global

Const =
Const
Const
Const

Const

VTNONE
VTSTRING
VTINTEGER =
VTFLOAT 3
VTPROCEDURE

0
=1
2

4

Const VTFUNCTION

Const VTLABEL 6

Global Const 0SS MAX WORD LEN

SetParseOption() Constants

Global Const PO STRINGS
strings

0

return

¢ NextToken() and related functions:

defined to help implement procedures by

defined to help implement functions by

defined to help implement labels

General Constants used with VBossAPI.DLL

255 maximum word length

determines if the parser should recognize

T mwn

as or If so, the parser will

NT STRING CONST when a string is parsed.

! NextToken Return Codes

Global Const NT MAX OPERATORS

Global
Global
Global
Global
Global
Global
Global
name

Global
name

Global
Global
Global

Const
Const
Const
Const
Const
Const
Const

Const

Const

Const
Const

encountered

Global

Const

internally

' Operator Constants - Tokens returned by NextToken ()

o+
]

Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global

* / "
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const

-1

NT_PAST EOL
NT_NO_KEYWORDS
NT_TOKEN NOTFOUND
NT_NO_FREE_MEMORY
NT_VARIABLE FOUND
NT_LABEL_FOUND
NT_FUNCTION

=7

NT PROCEDURE = -8

NT_NUMERIC CONST =
NT STRING CONST

NT_MATH FUNCTION

NT USER_ERROR = -9

o DT O)

NT PLUS
NT MINUS = 2
NT TIMES = 3
NT DIVIDE
NT DBL_QUOTE
NT SNG_QUOTE
NT SEMICOLON =

NT COLON = 8

NT LEFTBRACKET

NT RIGHTBRACKET
NT LEFTBRACE

NT RIGHTBRACE
NT LEFTPAREN

NT RIGHTPAREN
NT EXCLAMATION
NT AT = 16
NT POUND =
NT DOLLAR

NT PERCENT =

NT CARET = 20
NT AMPERSAND

NT EQUAL = 22
NT LESSTHAN =
NT GREATERTHAN
NT COMMA = 25

4

(&)

9

11
12

13

14
1

17
18
19

21

23

2

2

6

9

1

5

4

(in <token>)

32

-4
-5

-9
10
-11

@ # S

0

o
°

A

reserved operator tokens
! Note: Positive numbers >= NT MAX OPERATORS are valid tokens

end of the line or string
no keywords in keyword DB
next word can not be tokenized

no heap
keyword
keyword
keyword

keyword

numeric

available for buffer
found was a variable
parsed was a label name
parsed was a function

parsed was a procedure

constant encountered

string constant encountered
internal math function

added as a convience,

& <

>

not used

for operators

4

e EvalErrorString() Returned Error codes:
]
' EvalExpression Error Codes (returned via EvalErrorString())
]

Global Const EXPR SYNTAX ERROR = 1

Global Const EXPR PARAMETER MISSING = 2

Global Const EXPR PARAMETER COUNT ERROR = 3

Global Const EXPR INVALID PARAMETER = 4

Global Const EXPR OVERFLOW = 5

Global Const EXPR COMMA MISSING = 6

Global Const EXPR MISSING RPAREN = 7

Global Const EXPR_TYPE_MISMATCH = 8

Global Const EXPR INVALID IDENTIFIER = 9

Global Const EXPR PARAMETERS NOT ALLOWED = 10

Global Const EXPR EXPECTED FACTOR = 11

Global Const EXPR EXPECTED TERM = 12

Global Const EXPR EXPECTED EXPRESSION = 13

Global Const EXPR ZERO DIVIDE = 14

Global Const EXPR OUT OF MEMORY = 15

Global Const EXPR GARBAGE FOLLOWS = 16

Global Const EXPR VARIABLE EQUATE ERROR = 17

Global Const EXPR INVALID FUNCTION = 18

Copyright

Your use of VBossAPIL.DLL indicates your acceptance of the following terms
and conditions:

VBossAPI.DLL ("the Software") is a Windows/Visual Basic DLL licensed by Greg L. Truesdell
("GL ll).

Shareware license.

You are free to distribute the entire unmodified contents of the distribution package to anyone you
wish. You may NOT distribute any other programs that utilizes the Software without obtaining a
Registered User License for the Software from GLT. For a period of no more than 30 days, you may
use, test and duplicate the enclosed version of the Software. Thereafter if you wish to continue
using the Software you must register the Software with GLT, or else you must cease all use of the
Software. You will be an infringer if you do not pay the registration fee and continue to use this
version of the Software for more than 30 days.

Registered User License.

If you pay the registration fee for the Software to GLT, GLT will grant a non-exclusive development
license for one natural person to use one copy of the software regardless if the owner of the license
is a person or a business ("the Licensee"). In addition the Licensee may distribute the VBossAPI.DLL
("the DLL") with any or all products that use the DLL with the exceptions that (a) the recipients of any
such program ("the Recipients") are not licensed to use the DLL or the Software except with the
products produced by Licensees, and (b) the Recipients may not further redistribute the DLL, and (c)
the product using the DLL cannot enable the user to produce other programs using the DLL or other
parts of the supplied distribution package. No purported transfer of the license shall be effective
until the licensee notifies GLT of the name and address of the person receiving the license ("the
Transferee"), and transfers all copies of the Software to the Transferee, and removes or destroys any
other copies of the Software in the possession of, or under the control of the Licensee.

Disclaimer of Warranties.

GLT makes no claims as to the suitability of the software for any specific purpose. GLT DISCLAIMS
ANY AND ALL WARRANTIES EXPRESS OR IMPLIED, WRITTEN OR ORAL, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY SPECIFIC PURPOSE. The 45 day
evaluation period is concidered liberal enough for you to determine the fitness of this product to your
application.

Limitation of Liability.

In no event shall GLT be liable for any damages whatsoever arising out of the use of the Software,
including without limitation any direct, indirect or consequential damages or any damages for
business interruption, loss of profits, loss of information, or any pecuniary loss even if GLT has been
notified of the possibility of such damages. The limitation or exclusion of liability for incidental or
consequential damages may not be allowed in some states, and in these states those particular
prohibited limitations do not apply.

Copyright Information

The Software is protected by the copyright laws of Canada and the United States, and by the
copyright laws of many other countries pursuant to international treaties. The DLL and all other
materials provided in the distribution package are Copyright (c) 1994,95 by Greg Truesdell. All
Rights reserved. No portion of the Software, documentation or examples may be copied, stored, or
transmitted except as provided by the license.

Other brand and product names are trademarks or registered trademarks of their respective holders.

History of Changes

The following summarizes changes to VBossAPI.DLL in each SHAREWARE release.

Version 2.0 rev 1.1
¢ Added the SetDelimiters Procedure.

e Added the SetOperators Procedure

Version 2.0 rev 1.00 - New Version Release
e Keyword length has been increased to 32 from 16.

¢ Increased the number of keywords available to 800.

e String variables are now handled on the heap, like numeric variables. This means VBossAPI is
now capable of handling a total of 32,767 variables of any type.

e Variables can now be deleted with KillVariable()
e ABlock of variables can be deleted with KillVariablesFrom()

e Variables can be peeked on with PeekVariable(). The programmer can now retrieve a complete
list of variables, their type and content without knowing the name of the variable.

e The parser can detect strings (as " or ") and return the token NT_STRING_CONST to indicate
that the Keyword now contains the parsed string. This feature can be turned off with
SetParseOption(PO_STRINGS, False)

¢ Registered Developers now receive the SPOOK.EXE VBossAPI.DLL spy program. This utility
helps the programmer debug running programs.

¢ Numerous internal code improvements.

Version 1.0 rev 2.10

¢ Fixed Instance switching mechanism that caused memory leaks that were not released until the
DLL was unloaded.

Version 1.0 rev 2.01

e Squashed VTSTRING variable declaration bug that damaged the keyword database when the
65th variable was created. Now properly supports 128 VTSTRING variables.

Version 1.0 rev 2.00

e The library now supports multiple instances (separate programs accessing the library
concurrently.)

e Enhanced the demonstration program to demonstrate a two-pass method of execution: Pass
One: Locate and define Labels. Pass Two: Normal execution.

e Documentation Update

Version 1.0 rev 1.72
¢ Increased DLL code execution speed by optimizing iterative blocks.

e Documentation Update

Version 1.0 rev 1.71
¢ Modified temprary string creation logic.
e Several minor efficiency modifications.

Version 1.0 rev 1.62

e Fixed a parsing bug encountered when the first few characters to be parsed were operators.
This effected NextToken() and PeekNextToken().

e Added ParseUntil() function.
¢ NextToken() and PeekNextToken() now recognize Labels, Procedures and Functions.
¢ Added TestNumExpr() function.

¢ Removed resource reference to BWCC.DLL
My thanks to Richard Miller on CompuServe for catching this one.

e Sample application SweetPEA updated to include IF. THEN GOTO and improved comments in
the sample source code.

Version 1.0 rev. 1.61b
¢ Maintenance Release

e COMMA character added to the reserved token list.

Version 1.0 rev 1.61
e Added VARIABLE EXPRESSION EVALUATOR module.

Version 1.0 rev 1.52
e First SHAREWARE Release.

Introduction to VBossAPI.DLL

The VBoss (Visual Basic Optimized Script Support) APl is a Windows DLL designed to help the
Visual Basic application programmer define a script language. There are, however, a number of
related functions provided for completeness and utility.

Getting Started

The library is divided into three major functional groups:

e Word Related Functions
e Token Related Functions
e Support and Utility Functions

Word Related Functions

¢ These functions operate on a string of characters, and are designed to help the programmer
parse words and characters within the string. Functions are provided for parsing, counting,
locating and collecting words.

Token Related Functions

¢ These functions also operate on a string of characters, and are designed to support token
(representitive) values, keyword lists, variable lists and operators.

Support and Utility Functions
e These functions are not strictly required in a Script Support DLL, but have been made available
since the DLL either uses them, or the probability is great that a VB program would need them.

Word Related Functions

Word related functions are used to parse strings of words, locate words and count words in strings.
Note that Word related functions are one-based. This makes it easier to use with Visual Basic
functions like Mid$() etc. Token related functions, however, use zero-based character indexes.

GetWordAt()
LocateWord()
ParseStr()
ParseUntil()
WordCount()

GetWordAt()

A word related function that returns the idx-th word using a programmer supplied set of delimiters.

Visual Basic Declaration:
Declare Function GetWordAt Lib "VBossAPI.DLL" (ByVal idx As Integer, ByVal
st As String, ByVal delims As String) As String

Parameters:

e idx as Integer
Word index. If idx = 3 and st = "Hello there, world and delims =" ," then GetWordAt() would
return "world".

e stas String
String of words to parse for the idx-th word.

e delims as String
String of delimiters used to delimit words in the st.

Returns:

e String
The idx-th word in st is returned. If idx is greater than the number of words in the string, then a
null string is returned.

LocateWord()

WordCount()

Example:

' This example will print "golly"

Print GetWordAt (2, "Good golly, Miss Molly!"™, " ,!I")

LocateWord()

A word related function used to locate the character position of the idx-th word using a programmer
defined set of delimiters.

Visual Basic Declaration:

Declare Function LocateWord Lib "VBossAPI.DLL" (ByVal idx As Integer,
ByVal st As String, ByVal delims As String) As Integer

Parameters:

e idx as Integer
Word index. If idx = 3 and st = "Hello there, world" and delims =" ," then LocateWord() would
return 14.

e stas String
String of words to parse.

e delims as String
String of delimiters used to delimit words in the st.
Returns:
e Integer
The character index of the first character of the idx-th word in st.
Comments:

Word related functions, like this one, return one (1) based indexes. This makes it easier to use Mid$
() etc in Visual Basic using the index returned. Token based functions, however, are zero-based.

GetWordAt

WordCount()

Example:

' This example will print 6.

Print LocateWord (2, "Good golly, Miss Molly!"™, " ,!")

WordCount()

A word related function used to count the number of words in a string based on a programmer
provided set of delimiters.

Visual Basic Declaration:
Declare Function WordCount Lib "VBossAPI.DLL" (ByVal st As String, ByVal

delims As String) As Integer
Parameters:

e stas String
String of words to parse.

e delims as String
String of delimiters used to delimit words in the st.
Returns:

e Integer
Returns the number of words delimited by <delims>.

Example:
' This example will print 6.
Print WordCount ("Paradox exists only in belief systems.", " .")

ParseStr()

A word related function used to return the first or next word in a string based on a set of programmer
provided delimiters.

Visual Basic Declaration:
Declare Function ParseStr Lib "VBossAPI.DLL" (start As Integer, ByVal st
As String, ByVal delims As String) As String

Parameters:
e start as Integer Variable

Character index of first character in string to start parsing. If start = 0 or 1 then ParseStr() will
begin at the first character.

e stas String
String of words to parse.

e delims as String
String of delimiters used to delimit words in the st.

Returns:

e Integer (start)
After parsing the string, start will contain either the index to the next word in the string or -1 to
indicate that no more words are available (EOL).

e String
Returns the word located starting at character <start>, delimited by <delims> in string <st> or null
string if no more words (EOL).

Example:
This example will print:

]

]

] My
' mother

' the

! car

st = "My mother, the car."

start = 0

Word$ ParseStr (start, st, " ,.™)

While start > -1

Print Word$
Word$ = ParseStr(start, st, " ,.™)

Wend

ParseUntil()

A word related function used to return every character from the current character until a delimiter
character is found.

Visual Basic Declaration:

Declare Function ParseUntil Lib "VBossAPI.DLL" (start As Integer, ByVal st
As String, ByVal cset As String) As String

Parameters:

e start as Integer Variable
Character index of first character in string to start parsing. If start = 0 then ParseStr() will begin at
the first character.

e stas String
String of words to parse.

e csetas String
String of delimiters used to delimit words in the st.

Returns:
e Integer (start)

After parsing the string, start will contain either the index to the next word in the string. Unlike

ParseStr(), this function does not return -1 if at end of the string. Instead, the character index
returned is invalid.

e String

Returns the string copied from the current location (start) until a character in cset was located.

ParseStr()

Token Related Functions

Token related functions are used to define keywords and their tokens, variables and their types,
access the token and variable lists and implement syntax parsing functions. Unlike Word related
functions, token related functions use zero-based character indexes.

Token and Keyword Functions:
Definition Functions:

AddKeyword()
GetKeyword()
GetKeywordToken()
GetTokenKeyword()
SetDelimiters()
SetOperators()

List Functions:

KeywordCount()
LoadKeywords()
SaveKeywords()
ZapKeywords
Parsing Functions:

EvalErrorString()
EvalExpression()
NextToken()
PeekNextToken()
TestNumExpr()
Support Functions:

DefTokenDelims()
NT_CodeString()
NT_Operators()
SetParseOption()

Variable Functions:

AddVariable()
GetVariable()
KillVariable()
KillVariablesFrom()
PeekVariable()
SetVariable()
VariableCount()
ZapVariables

AddKeyword()

A token related function used to add keywords and tokens to the keyword list.

Visual Basic Declaration:
Declare Function AddKeyword Lib "VBossAPI.DLL" (ByVal kw As String, ByVal

kc As Integer) As Integer
Parameters:

e kw as String
Keyword string. The length of this string can be no greater then AKW_MAX KEYWORD LEN.

This string MUST be unique. You cannot define a token that allready exists; that includes
operators (which are predefined). All tokens are converted to uppercase before storage.

e Kkc as Integer
Integer token value (keyword code).

There are some limitations on what values you may use as tokens. No token value can be
negative, and MUST be greater or equal to MAX_OPERATORS. Operator codes reserve the first
set of tokens and negative values are used internally and represent error return codes..

Returns:
e Integer
If successful, a positive number >= MAX_OPERATORS is returned (this number represents the

slot in the Keyword List where this token is stored.) Otherwise a negative error code is returned.
See Constants() for error codes.

Constants()

Limitations

Example:

rc = AddKeyword ("begin", 100)

rc = AddKeyword ("end", 101)

rc = AddKeyword ("print", 102)

rc = AddKeyword ("input", 103)

Print ""

Print "Keyword Count is " & KeywordCount ()

Print "Keywords:"
For i1 = 1 To KeywordCount ()
Print GetKeyword(ii)

Next

Limitations

The current implementation of VBossAPIL.DLL imposes the following limitations:

Internal Definitions:

800 Keyword/Token entries.

All variable types limited only by available local memory up to 32,767 declarations.
Arrays are not implemented.

String variables are limited to 255 characters.

Up to 17 script objects can be created, but only one can be used by any one program.

GetKeyword()

A token related function that returns the keyword string for the keyword located as the idx-th entry in
the list.

Visual Basic Declaration:

Declare Function GetKeyword Lib "VBossAPI.DLL" (ByVal idx As Integer) As
String

Parameters:
e idx as Integer

The index into the keyword list. The first keyword in the list is 1 (one). The last keyword in the list
is KeywordCount(). If KeywordCount() = 0 then the list is empty.

Returns:
e String
The text Keyword if the value of idx is valid, otherwise a null string is returned.

Example:

' list all stored keywords and their token values
if KeywordCount () > 0 then

for idx% = 1 to KeywordCount ()

kw$ = GetKeyword (idx%)
Print kw$ & " = " & GetKeywordToken (kw$)

next idx$%

endif

GetKeywordToken()

A token related function used to return the integer token value of the character string previously
added to the keyword list with AddKeyword().

Visual Basic Declaration:
Declare Function GetKeywordToken Lib "VBossAPI.DLL" (ByVal kw As String)
As Integer

Parameters:

e kw as String
The keyword to locate.

Returns:

e Integer
If successful, the token value assigned to this keyword, otherwise a negative value (-1) is
returned.

Comments:

GetKeywordToken() is provided to allow the programmer to access the Keyword list stored internally
by VBossAPI. It can also be used to test for the existence of a keyword. If the token returned is -1,
then the keyword does not exist. Use AddKeyword() to add a keyword to the list.

AddKeyword()
GetTokenKeyword
Example:

' dynamic keyword definition example

if GetKeywordToken ("BEGIN") = -1 then
rc% = AddKeyword ("BEGIN",101)

endif

GetTokenKeyword()

A token related function used to return the text keyword referred to by the integer token value
previously stored with AddKeyword().

Visual Basic Declaration:

Declare Function GetTokenKeyword Lib "VBossAPI.DLL" (ByVal token As
Integer) As String

Parameters:

e token as Integer
The token previously assigned by AddKeyword() to a keyword.

Returns:
e String
The keyword assigned to this token.

If unsuccessful, a null string is returned.

Comments:

This function is provided the allow the programmer to decode a token. This may be used to provide
debugging capabilities during development. It can also be used to test whether a given token has
already been assigned.

AddKeyword()
GetKeywordToken()
Example:

' Locate first free token value

In this simplistic example, the do while..loop
would continue until a free token was found.
ii =1

do while Len (GetTokenKeyword(ii)) > O

ii =411 + 1

loop

SetDelimiters|()

This procedure allows the programmer to alter the delimiters used by the Keyword parser. Read on
for some things to be aware of.

Visual Basic Declaration:
Declare Sub SetDelimiters Lib "VBossAPI.DLL" (ByVal delims As String)

Parameters:
e delims as String

A string containing the delimiters to be used by the keyword parser. The maximum number of
defineable delimiters is 64.

Warning:
Remember - You can cause the parser to operate improperly if you set delimiters to an

empty string. Not including the space character will seriously effect the parser's ability
to detect variables and keywords. Use with caution.

Example:

]

' Alter the delimiters to remove the Chr$(15) character from
' the token delimiter set.

]

DefaultDelimiters$S = DefTokenDelims ()

locn% = Instr(DefaultDelimiters, ''+Chr$ (15))

NewDelimiters$ = Left$ (DefaultDelimiters,locn-1) + Right$
(DefaultDelimiters, Len (DefaultDelimiters) - locn

' now set the new delimiters with Chr$(15) extracted
]

SetDelimiters NewDelimiters$

SetOperators

This token-related procedure allow the programmer to alter the operator token list.

Visual Basic Declaration:
Declare Sub SetOperators Lib "VBossAPI.DLL" (ByVal OpList As String)

Parameters:
e Oplist as String

String containing the set of operators the token parser will use to determine single character
operators. The maximum number of operators allowed is 64.

Note:

You can switch operator sets at any time and as often as you like in your program. This can be very
useful when parsing different types of text in the same file.

Warning:

Changing the operator set can invalidate the NT_* operator constants. You may choose to set the
operators list to an empty string. Use with care.

Example:

' Add the '.' operator to the default set

SetOperators = NT Operators() + "."

KeywordCount()

A token related function which returns the number of keywords currently stored in the keyword list.

Visual Basic Declaration:
Declare Function KeywordCount$% Lib "VBossAPI.DLL" ()

Parameters:
e None

Returns:
e Integer
The number of keywords in the keyword list. Does NOT include the internally defined operators.

AddKeyword()

LoadKeywords()

A token related function used to load a list of keywords and tokens previously saved with the
SaveKeywords() function.

Visual Basic Declaration:
Declare Function LoadKeywords Lib "VBossAPI.DLL" (ByVal filename As

String) As Integer
Parameters:
e filename as String
Name of the file to load the keyword list from.
Returns:
e Integer
Returns 0 if successful, -1 otherwise.
Comments:
Provided to help implement alternate language keywords for the same set of tokens.

AddKeyword()
SaveKeywords()

SaveKeywords()

A token related function used to save the current contents of the keyword list.

Visual Basic Declaration:
Declare Function SaveKeywords Lib "VBossAPI.DLL" (ByVal filename As
String) As Integer
Parameters:
e filename as String
Name of the file to save the keyword list.
Returns:
e Integer
Returns 0 if successful, -1 if not.
Comments:

Saves the entire keyword list structure to a file. Included primarily to help implement alternate
language keywords while retaining the same tokens.

AddKeyword()
LoadKeywords()

ZapKeywords and ZapVariables

Token related functions used to completely erase the contents of the keyword list or variable list.

Visual Basic Declarations:
Declare Sub ZapKeywords Lib "VBossAPI.DLL" ()

Declare Sub ZapVariables Lib "VBossAPI.DLL" ()

Parameters:
e None

Returns:
¢ Nothing

Comments:
Erases ALL Keywords or Variables.

EvalErrorString()

An expression evaluation function used to return the error code and descriptive text for the last
evaluation error in EvalExpression()

Visual Basic Declaration:
Declare Function EvalErrorString Lib "VBossAPI.DLL" (errcode As Integer)

As String
Parameters:
e errcode as Integer (variable)

EvalErrorString() returns the numeric code for the last evaluation error. This parameter must be a
variable.
Returns:

e Integer (errcode)
See errcode above.

Constants()
e String

The single-line text description of the last error found while evaluating an expression with
EvalExpression()

EvalExpression()
TestNumExpr
Example:

An example use of EvalErrorString

]

answer$ = EvalExpression ("Test = ABC", rc%)
If Not rc% Then

Print EvalErrorString(rc%) & " [Error#" & rc% & "]"

End If

EvalExpression()

A token related function used to evaluate infix notation numeric expressions.

Visual Basic Declaration:

Declare Function EvalExpression Lib "VBossAPI.DLL" (ByVal ExprStr As
String, rc As Integer) As String

Parameters:
e ExprStras String
e rc as Integer (variable)

Returns:

e rc as Integer
True if successful, otherwise false.

e String
The string representation of the results of the calculation.

EvalExpression will return a null string if the calculation was unsuccessful, otherwise the string
returned can be used as a parameter to the Val() function if it's numeric value is required.

Comments:

The expression evaluator is a very important part of any set of language tools. The evaluator is
linked closely with the variable definition table created and maintained by VBossAPI. In fact, the
evaluator is capable of defining and returning variables and their values. It works much like Visual
Basic does. This version of the evaluator is designed for integer and real variables only.

You may predefine variables (and in fact should, to ensure that string variables are properly
allocated) using the AddVariable() function, or let the evaluator define the variable. The evaluator
defaults it self-defined variables as reals. It will convert integers and reals on-the-fly to insure that
calculations are successful. The example given below should give you some idea of how you can
use the evaluator.

EvalExpression() comes with built-in functions available (in an up-comming version, you will be able
to define the actions of your own functions):

Pl, ABS, ARCTAN, COS, EXP, LN, SQR and SQRT are available. Each, of course, return a value
of type VTFLOAT (real).

Constants()
EvalErrorString()
TestNumExpr()
Example:

' This example demonstrates how EvalExpression can evaluate expressions
' including variables and functions.

' In the following example, the variables Radius and Area are created
' automatically. They are accessible by either EvalExpression or

' GetVariable ()

Dim rc As Integer
Dim VarType As Integer

If EvalExpression("Radius = 1.24", rc) <> "" Then
If EvalExpression("Area = Pi * Sgr(Radius)", rc) <> "" Then
Print "The area of a circle with a radius of ";
' return the value of Radius using EvalExpression
Print EvalExpression ("Radius", rc);
' return the value of Area using GetVariable ()
Print " is equal to " & GetVariable ("Area", VarType)

End If

End If

TestNumExpr()

Token related function used to evaluate the truth of a numerical expression.

Visual Basic Declaration:

Declare Function TestNumExpr Lib "VBOSSAPI.DLL" (ByVal LExpr As String,
ByVal Op As String, ByVal RExpr As String, Success As Integer) As Integer
Parameters:

e LExpr as String
A valid numeric expression. May include numeric variables, functions and constants.

e Op as String
Atest operator. The only tests supported are =, <, >, <=, >=, <>, [f your script language
requires !=, |, # , == etc, then you must translate the operator before calling this function.

e RExpr as String
A valid numeric expression. May include numeric variables, functions and constants.
Returns:
e Success as Integer (True/False)
e Integer (True/False)

True if the expression is true.

Comments:

This function is provided to simplify the implementation of control constructs such as if ... then,
while ... wend, do ... until etc.

EvalErrorString()
EvalExpression()
Example:

This example demonstrates the use of TestNumExpr ()

Dim Success As Integer
Dim Result As Integer
Result = TestNumExpr ("1+2*3", "=", "7", Success)
If Not Success then
Print "Error in Expression"
ElseIf Result then
Print "Expression is TRUE"
Else

Print "Expression is FALSE"

End If

NextToken() and PeekNextToken()

Token related functions used to begin or continue parsing defined tokens.

NextToken() and PeekNextToken() differ only in that PeekNextToken() does not update the character
index variable (start). PeekNextToken() allows you to peek at what the next token is without
updating the character index.

Visual Basic Declaration:
Declare Function NextToken Lib "VBossAPI.DLL" (start As Integer, ByVal st
As String, token As Integer) As String

Declare Function PeekNextToken Lib "VBossAPI.DLL" (ByVal start As Integer,
ByVal st As String, token As Integer) As String

Parameters:

e start as Integer Variable
Character index of first character in string to start parsing. If start = 0 or 1 then NextToken() will
begin at the first character of the string.

This parameter is a variable. NextToken() will return the updated value of start, indicating the
character location of the next word to parse.

e stas String
String of characters to parse for the next token.

e token as Integer Variable
The token value, if any, of the currently parsed word.

If an error occured during parsing, the error code will be returned in <token>.

Returns:
e start as Integer Variable
Updated to the next character start position in the string.
e token as Integer Variable
Contains the token for the current word, or an error code.
e String
The word parsed. If the token value is positive, then this is a keyword. If the token value is
negative, then either the word is not a keyword, or an error has occured.

Comments:

NextToken() and PeekNextToken() are the core functions of VBossAPI. Once you have defined the
working parameters for your language, you then use these functions to parse lines of script text. By
placing NextToken() in your main processing loop, you can use Select..Case..End Select statements
to implement the language.

Constants()
Example:

' Simple parsing example

' This example is intentionally kept simple, and

' should be concidered pseudo-code. A guide to how
' you might implement the main loop of a script

' interpreter.

' In the example calls for DIM, PRINT and INPUT you
' will notice the use of 1i% as a parameter. This is
' because, in all likelyhood, the implementation

' of these keywords will require the parsing index

' value (i1i%) to continue parsing st$ for

' parameters they require.

' Assume the variable st$ contains the following text:

' Dim AS

' Begin

! A = "Hello"
! Input A

! Print A

' End

rc$ = AddKeyword ("BEGIN", 100)

rc$ = AddKeyword ("END",999)
rc$ =
rc$ = AddKeyword ("PRINT", 202)

(
(
AddKeyword ("INPUT", 201)
(
(

rc% = AddKeyword ("DIM",203)

(@}

ii% =
running =
token = 0
Do While running

keyword$ = NextToken (ii%, st$, token)

Select Case token

Case 100
DoBegin () ' your call to implement BEGIN

Case 999, NT_PAST EOL

DoEnd () ' your call to implement END

running = False
Case 201

DoInput (ii%) ' your call to implement INPUT
Case 202

DoPrint (ii%) ' your call to implement PRINT
Case 203

' your call to implement variable
' creation (see AddVariable())
If Not DimVariable(ii%) then

running = False
End If

Case NT_ VARTIABLE FOUND
' your variable equating code
' (see SetVariable())
DoSetVariable (ii, Keyword)

Case NT_TOKEN NOTFOUND
DoSyntaxError () ' your syntax error code
running = False

Case Else
DoOtherError () ' your other error code
running = False

End Select

Loop

DefTokenDelims()

A token related support function that returns a string containing the default set of token delimiters.

Visual Basic Declaration:
Declare Function DefTokenDelims Lib "VBassAPI.DLL" ()

Parameters:
e None

As String

Returns:
e String

Returns a string containing the default token parsing delimiters. This string can be used in other
functions that require a delimiter string, if desired.

Example:

' Sample using Word function WordCount ()

Print WordCount ("Here, in this box, is the answer.", DefTokenDelims()+".")

NT_CodeString()

A token related function used to return a context-class statement based on the value of the integer
token provided.

Visual Basic Declaration:
Declare Function NT CodeString Lib "VBossAPI.DLL" (ByVal token As Integer)

As String
Parameters:
e token as Integer
Normally the token value returned by NextToken() or PeekNextToken().
Returns:
e String
A context statement describing the class of token represented by the value of token.
Comments:

This function is provided for the programmer for debugging purposes. It returns a short statement
that describes the class of the token based on the NT_* result codes.

NextToken()

NT_Operators()

A token related function used to return the string of pre-defined (default) operators.

Visual Basic Declaration:
Declare Function NT Operators Lib "VBossAPI.DLL" () As String

Parameters:
e None

Returns
e String

Containing the string of operators defined by VBossAPI
Comments:

The first character of the string contains the first operator. This means that the token code for the
first operator is equal to 1.

DefTokenDelims()
Example:

' Determining the token for a given operator.

This example returns a token value of 3.

token% = Instr(NT Operators(), "*")

SetParseOption()

This special function is used to set and reset specific kernal parsing options.

Visual Basic Declaration:
Declare Sub SetParseOption Lib "VBossAPI.DLL" (ByVal Opt As Integer, ByVal
OnOff As Integer)

Parameters:

e OptAs Integer
Option identifier.

e OnOff As Integer
Use TRUE to activate the option and FALSE to deactivate the option.

Note:

Version 2.0, Revision 1.0 implements only one option: PO_STRING. The default for PO_STRING is
ON.

Constants (See SetParseOption Constants)

AddVariable()

A token related function used to add variable declarations to the variable list.

Visual Basic Declaration:
Declare Function AddVariable Lib "VBossAPI.DLL" (ByVal vname As String,
ByVal vtype As Integer, ByVal vdata As String) As Integer

Parameters:

* vname as String
Name of the variable to add. Can not be longer than AKW_MAX_KEYWORD_ LEN. Mustbe
unique.

e vtype as Integer
The variable type.

e vdata as String
The variable data.

All data is copied to VBossAPI as a string. The value of vdata is determined by the value of
vtype. Type checking is done internally to verifiy the type. For example: If vtype =
VTINTEGER, then vdata could contain "125", but would be a type mismatch is it contained "one
hundred and twenty five."

Returns:

e Integer
Returns the enumerated variable type if successful. Otherwise returns an error code.

Constants()
Limitations
Variable Data Types
Example:

' Variable handling example.

rc% = AddVariable("Balance", VTFLOAT, "324.94")
if rc% > -1 then

amt = Val (GetVariable ("Balance", rc%)) + 10.32
rc% = SetVariable ("Balance", Str(amt))

if rc% > -1 then

Print GetVariable ("Balance", rc%)

else
Print "SetVariable failed with error code " & rc%
endif
else
Print "AddVariable failed with error code " & rc%

endif

Variable Types

VBossAPI Variable Table Data Types:
Undefined VTNONE

String VTSTRING
Integer VTINTEGER
Float VITFLOAT

Procedure VTPROCEDURE
Function VTFUNCTION
Label VTLABEL

Constants

GetVariable()

A token related function used to return the string representation of the value currently stored for the
variable keyword. The variable type is also returned. The variable must have been stored with the
AddVariable() function.

Visual Basic Declaration:

Declare Function GetVariable Lib "VBossAPI.DLL" (ByVal vname As String,
vtype As Integer) As String

Parameters:
e vname as String

The name of the variable to be retrieved.
e vtype as Integer Variable

This parameter should be provided as an Integer variable, not a constant. Its original contents
are ignored and overwritten.

Returns:

e vtype as Integer Variable
The variable type or error code is returned in this variable.

If successful: Contains the variable type of the Variable vname.
If unsuccessful: Contains the returned error code.
e String

Returns the variables contents as a string.
If unsuccessful returns a null string.

Variable Data Types
AddVariable()
GetKeyword()
SetVariable()

Example:

' Variable handling example.

rc% = AddVariable("Balance", VTFLOAT, "324.94")
if rc% > -1 then

amt = Val (GetVariable ("Balance", rc%)) + 10.32
rc% SetVariable ("Balance", Str(amt))

if rc% > -1 then
Print GetVariable ("Balance", rc%)

else

Print "SetVariable failed with error code " & rc%
endif
else
Print "AddVariable failed with error code " & rc%

endif

SetVariable()

A token related function used to modify the variable contents of a previously defined variable.

Visual Basic Declaration:
Declare Function SetVariable Lib "VBossAPI.DLL" (ByVal vname As String,
ByVal vdata As String) As Integer

Parameters:
* vname as String
The text name of the variable to set. Limited in length to AKW_MAX_KEYWORD_LEN.

e vdata as String
The string representation of the data to store with this variable. Limited in length to
OSS_MAX_WORD_LEN.

Returns:

e Integer
Success returns a positive number representing the data type of the variable, otherwise a
negative error code is returned. (See AddVariable() for error codes.)

AddVariable()
GetVariable

KillVariable() and KillVariablesFrom()

Token related procedures used to manage the deletion of variable references from the variable
database.

Visual Basic Declaration:
Declare Sub KillVariable Lib "VBossAPI.DLL" (ByVal vname As String)

Declare Sub KillVariablesFrom Lib "VBossAPI.DLL" (ByVal vname As String)

Parameters:
e vname As String

Name of the variable to delete. In the case of KillVariablesFrom, this is the name of the variable
to delete, and all others created after it.

AddVariable()

PeekVariable()

A token related function used to peek into the variable database by record number. Similar in
function to GetKeyword().

Visual Basic Declaration:
Declare Function PeekVariable Lib "VBossAPI.DLL" (ByVal idx As Integer,

vIype As Integer) As String
Parameters:

e idx As Integer
The one-based index into the variable database.

e vType As Integer

The function returns the type of the variable in vType.
Returns:
e String

The name of the variable.

AddVariable()
KillVariable()

VariableCount()

A token related function that returns the number of variables in the variable database.

Visual Basic Declaration:
Declare Function VariableCount Lib "VBossAPI.DLL" ()

Parameters:
e None

Returns
e Integer
Number of declared variables in the variable database.

As Integer

Support and Utility Functions

Utility functions provided to assist the programmer with implementation issues involving filenames,
strings and .DLL accessing.

Filename Related Functions:

DirOnly()
ExtOnly()
FullPath()
NameOnly()
ReplacePath()

String Related Functions:
PackSpaces()

DLL Access Related Functions:

LPGetVBStr()
VBStrGetLP()

DirOnly()

A general purpose function that returns only the path (directory) part only for the gualified filename
given.

Visual Basic Declaration:
Declare Function DirOnly Lib "VBossAPI.DLL" (ByVal fn As String) As String

Parameters:

e fnas String
The filename.

Returns:
e String
The Directory part of the filename. (Includes the trailing "\")

ExtOnly()
FullPath()
NameOnly()
ReplacePath()
Example:

' This example prints "C:\DATA\"

Print DirOnly ("C:\DATA\BOOK.ONE")

ExtOnly()

A general purpose function that returns only the extension part of a qualified filename.

Visual Basic Declaration:
Declare Function ExtOnly Lib "VBossAPI.DLL"

Parameters:
e fn as String
Valid partial or full filename.
Returns:
e String

Only the extension (with preceeding ".") for the filename.

DirOnly()
FullPath()
NameOnly()
ReplacePath()
Example:

' prints ".DAT"

Print ExtOnly("D:\Editor\Config.Dat")

v prints nwn
A\l

Print ExtOnly ("D:\Editor\DataFile")

(ByVal fn As String)

As String

FullPath()

A general purpose function used to expand a filename into a completely gualified filename.

Visual Basic Declaration:

Declare Function FullPath Lib "VBossAPI.DLL" (ByVal fn As String) As
String

Parameters:

e fnas String
Valid partial or full filename.

Returns:
e String
Fully qualified path for this file. Uses the current drive and directory if necessary.

ExtOnly()
DirOnly()
NameOnly()
ReplacePath()
Example:

If the current directory is C:\ACCOUNTS
then the following code would set fp$ = "C:\ACCOUNTS\AUDIT.TXT

fp$ = FullPath ("audit.txt")

NameOnly()

A general purpose function used to return only the name part of a qualified filename.

Visual Basic Declaration:

Declare Function NameOnly Lib "VBossAPI.DLL" (ByVal fn As String) As
String

Parameters:

e fnas String
Valid partial or full filename.

Returns:
e String
Only the file name part of the filename.

DirOnly()
ExtOnly()
FullPath()
ReplacePath()
Example:

' This code will print "README"

Print NameOnly ("C:\Windows\ReadMe.Txt")

ReplacePath()

A general purpose function used to replace the path part of a filename with a new path. The string
containing the new path may be a completely gualified filename.

Visual Basic Declaration:

Declare Function ReplacePath Lib "VBossAPI.DLL" (ByVal fn As String, ByVal
np As String) As String

Parameters:

e fn as String
Source filename.

e np as String
New path filename. May be a completely qualified flename. Only the (valid) path part of the
filename will be used.

Returns:
e String
The newly created filename with the path replaced by the path part of <np>.

DirOnly()
ExtOnly()
FullPath()
NameOnly()
Example:

' This code will print F:\DATA\SMITH.TXT

pathl$ = "C:\ACCOUNT\SMITH.TXT
path2$ = "F:\DATA\SOURCE.DAT"

Print ReplacePath (pathl$, path2$)

' This example will print "C:\MESSAGE.EXE"

Print ReplacePath ("F:\BACKUP\MESSAGE.EXE","C:\")

PackSpaces()

A general purpose function provided to pack multiple spaces and tabs within a string. Leading and
trailing spaces are preserved, but packed to a single space.

Visual Basic Declaration:

Declare Function PackSpaces Lib "VBossAPI.DLL" (ByVal st As String) As
String

Parameters:

e stas String
Contains the string to be packed.

Returns:

e String
All multiple spaces and tabs are compressed into a single space. This compresses the string to
the minimum size required for simple parsing.

Example:
' This example will print "This is a test."

Dim st As String

st = "This is a test."
Print PackSpaces (st)

LPGetVBStr()

A general purpose function provided to return a Visual Basic String from a zero-terminated string.

Visual Basic Declaration:
Declare Function LPGetVBStr Lib "VBossAPI" (ByVal pStr As Long) As String

Parameters:
e pStras Long
Pointer to a zero terminated string (Ipsz).

Returns:
e String

Returns a Visual Basic String created from the string pointer.
Comments:

This function is provided to allow VB programmers to collect a string from a pointer returned by a
Windows .DLL library call.

VBStrGetLP()

VBStrGetLP()

A general purpose function provided to return a pointer to the zero-terminated string within a Visual
Basic String.

Visual Basic Declaration:
Declare Function VBStrGetLP Lib "VBossAPI" (ByVal pStr As String) As Long

Parameters:

e pStras String
Visual Basic String passed by value.

Returns:
e Long

Returns a pointer to the Ipsz portion of the VB String.
Comments:

Some .DLL library functions require a pointer to a zero terminated string. This function allows the
VB programmer to pass the address of a declared and sized string as a parameter. Strictly speaking,
however, this function is not often required, since the VB ByVal modifier will pass the address of the
string. ltis included, none the less, for completeness as it may be useful in some circumstances.

LPGetVBStr()

Example:

' Passing a string to a .DLL library call.

This example uses a Windows .DLL function call to
convert a string to ANSI uppercase.

' THIS IS A LOWERCASE STRING will be printed.
Dim szBuffer As String * 128

szBuffer = "this is a lowercase string."
AnsiUpperBuff (VBStrGetLP (szBuffer), 128)

Print szBuffer

Registration

To register VBossAPI.DLL, you must obtain a registration key from the author. The registration key
is then used by your program to register the DLL. This will disable the shareware registration dialog
that appears whenever the DLL is loaded or used by your program. You will also receive the latest
version of the library. This key will work on all subsequent bug-fix and minor revision releases until a
new version is released.

Obtaining a Registration Key
To obtain a registration key you must send the registration amount to:

Greg Truesdell
Suite 308

633 North Road
Coquitlam, BC

CANADA

V3J 1P3

Registration Fee Options:

VBossAPI Personal Version

This is VBossAPI V1.0 with 256 Keywords, limited String variable space and no spy utility. Perfect
for less demanding projects.

e CompuServe SWREG ID# 4362: US$19.95

The registration key will be sent to you via CompuServe E-Mail within 24 hours of receipt. You
will also receive a ZIP archive containing the distribution files.

e Mail: US$23.95

The registration key will be sent to you via return mail. You will also recieve a 3% disk
containing the distribution files. The package will be mailed to you within 24 hours after receiving
your payment. With this option you MUST send a MONEY ORDER made out to GREG
TRUESDELL.

VBossAPI Professional Version

This includes all of the features described in this help file. Handles 800 keywords, 32,767 total
variable declarations, variable database management and includes the SPOOK.EXE VBossAPI.DLL
spy utility. For more demanding projects.

New Orders
e Compuserve SWREG ID# 8243: US$34.95

The registration key will be sent to you via CompuServe E-Mail within 24 hours of receipt. You
will also receive a ZIP archive containing the distribution files. Includes free V2.x updates E-
Mailed directly to you.

e Mail: US$39.95

The registration key will be sent to you via return mail. You will also recieve a 3% disk
containing the distribution files. The package will be mailed to you within 24 hours after receiving
your payment. With this option you MUST send a MONEY ORDER made out to GREG
TRUESDELL.

Upgrading from Version 1.0

e Compuserve SWREG ID# 8242: US$15.00

REGISTERED VBOSSAPI.DLL LICENSEES ONLY! | have your ID on file, so all you have to do
is place your order, and you will recieve the new registration key and distribution archive.

The registration key will be sent to you via CompuServe E-Mail within 24 hours of receipt. You
will also receive a ZIP archive containing the distribution files. Includes free V2.x updates E-
Mailed directly to you.

Note: All registration information is held in the strictest of confidence.

Using the Registration Key

RegisterVBossAPI
You should include the RegisterVBossAPI() call before ANY other VBossAPI.DLL function.

RegisterVBossAPI()

This function is used to register the shareware version of the library. If successful it will disable any
and all shareware related nag screens etc.

Visual Basic Declaration:
Declare Function RegisterVBossAPI Lib "VBossAPI.DLL" (ByVal UserID As
String, ByVal RegID As String) As Integer

Parameters:
e UserlD as String

This is the Registered User ID exactly as you provided it in the registration form. Case is
significant!

e ReglD as String

This is the Registration ID (key) sent to you after you sent your payment and registered the

library.
Results:
e Integer

Returns 0 if successful, otherwise -1.

Registration
Comments:

Once you have purchased the Registration Key you can use this function to inhibit the shareware
nag dialog(s).

Example:

' assuming your Registration User ID was "J. Smith" and

the registration key sent to you was "123456789"

SHandle = CreateScrObject ()
If RegisterVBossAPI("J. Smith", "123456789") = -1 Then

MsgBox "Invalid Registration Key for J. Smith"

End If

Spook.Exe - VBossAPI Spy Utility

The Registered version of VBossAPI v2.0 includes this new VBossAPI internal database spy utility.
This utility allows the programmer to examine the 'state' of the parsing engine while the program is
running.

Features:

e Displays the amount of memory the script object is consuming.
e Capable of accessing all script objects.

e Displays all variables, their type and contents.

¢ Displays the entire Keyword Database.

Usage Notes:

Spook.Exe is not written in Visual Basic and requires that the program to be examined be running
before executing Spook. Once Spook is running, you can keep it active whether or not the original
program is running.

= ¥BossAPI Spook

Bl [« 2] B
Script Dbject #8
Instance : 369E

Global Handle: 48C6

Global Block : 42845 hytes
Block Address: 4BAC708000
Status:

Currently Active
Currently Used

Statistics:
Symbol Space: 641 bytes
Variables : 7
Label TRYAGAIN at location M17
String HAME = "Greg"
Float AREA = 3.88132711
Float RADIUS = 1.1

Integer AHSWER = ¥

Integer CR = 13

Integer LF = 18
Keywords t 14

188 DIH

181 HMSGBOX

182 IHPUT

183 INTEGER

184 STRIHNG

185 FLOAT

186 AS

187 CHR

188 IF

189 THEH

118 GOTO

111 GOSUB

112 RETURH

999 EHD

_Glossary

HE=EEEEREEEREEEEEEEEEE =]

AKW_DUPLICATE_KEYWORD
AKW_INVALID_CHAR
AKW_INVALID_TOKEN
AKW_KEYWORD_TOO_LONG
AKW_MAX_KEYWORD_LEN
AKW_MAX_KEYWORDS
AKW_NO_MORE_ROOM
AKW_OVERFLOW
AKW_TYPE_MISMATCH

Default token parsing delimiters
Delimiters

o
-
-

a

Keyword Lists
Keyword

L
Ipsz

M
MAX_OPERATORS.

N

NT_FUNCTION
NT_LABEL_FOUND
NT_MATH_FUNCTION
NT_MAX_OPERATORS
NT_NO_FREE_MEMORY
NT_NO_KEYWORDS
NT_NUMERIC_CONST
NT_PAST_EOL
NT_PROCEDURE
NT_STRING_CONST
NT_TOKEN_NOTFOUND
NT_VARIABLE_FOUND

Null String

(0

Operators
0SS _MAX WORD _LEN

OSS_MAX_WORD_LEN.

P

Parsing
PO_STRINGS

Q
Qualified Filename

T

Token

\'

Variable Lists

VTFLOAT
VTFUNCTION
VTINTEGER
VTLABEL
VTNONE
VTPROCEDURE
VTSTRING

W
Word

Index

» B=EEEEEEE]E e el =l= [lE= =] o o]l fe]f

AddKeyword
AddVariable

bilnfo

iKeywords
biNext

biOpen
biPrev
iQui
biSpace
biStatus
biVarNameData

biVarType

(=2

(=2
==

N"

(@)

Constants

Copyright
D

DefTokenDelims

DirOnly
E

EvalErrorString
EvalExpression
ExtOnly

F

FullPath

G

GetKeyword
GetKeywordToken
Getting Started

GetTokenKeyword
GetVariable

GetWordAt

Glossary
H

History of Changes

nde
Introduction

K

KeywordCount
KillVariable

L

Limitations
LoadKeywords
LocateWord
LPGetVBStr

N

NameOnly
NextToken

NT CodeString
NT_ Operators
P

PackSpaces
ParseStr
ParseUntil
PeekVariable

X

R

Register
RegisterVBossAPI
ReplacePath

S

SaveKeywords
SetDelimiters
SetOperators
SetParseOption
SetVariable
Spook

Support Functions
T

TestNumExpr
Token Related Functions

\"/
VariableCount

VarTypes

VBossAP| Reference Manual
VBStrGetLP

W

Word Related Functions
WordCount

Z

Zap

Refresh Information

This button refreshes the currently displayed script object. You will need to refresh the display each
time you want to view the current object. Spook is not automatic.

Keyword Database
Displays the current contents of the Keyword database for the script object selected.

Next Script Object

This button advances the display window to the next script object. There are a maximum of 17
objects (0..16) available.

Open the VBossAPI Database

This button is used to (re)open the VBossAPI internal adatabase and position the window to the first
object.

Previous Script Object

This button backs up the display window to the previous script object.

Quit Spook

Hmmm.

Symbol Space Consumed

Displays the total amount of memory consumed by the symbol table. The amount displayed
includes the overhead of the symbol table object.

Script Object Status

This area reports the current status of the script object.

* Activel/lnactive

Reports whether or not the script object currently displayed is the active object.
e Used/Free

Reports whether the currently displayed script object is in use.

Variable List - Variable Name and Contents

Displays the name of the variable and it's current contents. Remember to press the Refresh button
when necessary.

Variable List - Variable Type

Displays the currently defined variable's data type as a word.

Constants

AKW_DUPLICATE_KEYWORD
AKW_DUPLICATE_KEYWORD = -3

An attempt was made to add a duplicate keyword or variable.

AKW_INVALID_CHAR
AKW_INVALID_CHAR = -2

An invalid character was passed in a keyword or variable name.

AKW_INVALID_TOKEN
AKW_INVALID_TOKEN = -5

An invalid token value was passed in AddKeyword(). Tokens are only legal as integers from
MAX_OPERATORS to 32768.

AKW_KEYWORD_TOO_LONG
AKW_KEYWORD_TOO_LONG = -4

The keyword or variable name passed was greater in length than AKW_MAX_KEYWORD_LEN.

AKW_MAX_KEYWORD_LEN
AKW_MAX_KEYWORD_LEN = 16

AKW_MAX_KEYWORDS
AKW_MAX_KEYWORDS = 256

The maximum number of keywords that the keyword list can hold.

AKW_NO_MORE_ROOM
AKW_NO_MORE_ROOM = -1

Not enough memory to allocate another keyword or variable record.

AKW_OVERFLOW
AKW_OVERFLOW = -7

String length greater than 255 characters or an attempt to set a variable to a value larger than the
defined data type. This error occurs in calls to AddVariable().

AKW_TYPE_MISMATCH
AKW_TYPE_MISMATCH = -6

The data passed in AddVariable() or SetVariable() is incompatable with the defined data type.

API

Application Programming Interface

Default token parsing delimiters

Internally set by VBossAPI for token parsing routines. It is a character set containing all control
characters [chr(1) to chr(31)], the space and the comma.

Delimiters

A string of one or more characters used to delimit words in a string of characters. For example: "This is
a String" contains four words delimited by spaces.

DLL
Dynamic Link Library

Keyword Lists

An internally maintained database of Keywords including the token representing the keyword. This list
is used when parsing a string using the NextToken() and PeekNextToken() functions.

Keyword

The string of characters (word) you wish to assign a token value to. VBossAPI restricts the length of
keywords to MAX_KEYWORD_LEN characters.

Ipsz
Long Pointer to String Zero-terminated.

MAX_OPERATORS.
MAX_OPERATORS = 32

NT_FUNCTION
NT_FUNCTION = -7

Token is a variable of type VTFUNCTION

NT_LABEL_FOUND
NT_LABEL_FOUND = -6

Token is a variable of type VTLABEL

NT_MATH_FUNCTION
NT_MATH_FUNCTION = -11

Returned by NextToken when an internal math function identifier is encountered.

NT_MAX_ OPERATORS
NT_MAX_OPERATORS = 32

Internally, VBossAPI reserves 32 characters for operators.
User-defined tokens are >= NT_MAX_OPERATORS with a maximum value of 32768.

NT_NO_FREE_MEMORY
NT_NO_FREE_MEMORY = -4

Not enough free memory to allocate the parsing buffer.
NT_CodeString returns "NO MEMORY" for this code.

NT_NO_KEYWORDS
NT_NO_KEYWORDS = -2

There are no keywords in the keyword list.
NT_CodeString returns "NO KEYWORDS" for this code.

NT_NUMERIC_CONST
NT_NUMERIC_CONST = -9

Returned by the NextParse when a numeric constant is encountered.

NT_PAST_EOL
NT_PAST_EOL = -1

Parsed past the end of line or file. NextToken() and PeekNextToken() return a null string if EOL is
encountered.

NT_CodeString returns "PAST EOF" for this code.

NT_PROCEDURE
NT_PROCEDURE = -8

Token is a variable of type VTPROCEDURE.

NT_STRING_CONST
NT_STRING_CONST =-10

Returned by NextToken when a string constant is encountered.

NT_TOKEN_NOTFOUND
NT_TOKEN_NOTFOUND = -3

Word parsed was not a keyword. Not a tokenized word.
NT_CodeString returns "NOT A TOKEN" for this code.

NT_VARIABLE_FOUND
NT_VARIABLE_FOUND = -5

Keyword found was a Variable name. No token value.
NT_CodeString returns "VARIABLE" for this code.

Null String
An empty string containing no characters (length = 0).

Operators

An operator is a special character used to represent a function. Normally operators are used to define
arithmetic and string evaluation functions. (ie: MyVal = 2 * (Amount))

The operators in the above example are =, *, (and).

Internally, the operators are set to +-*/";:[[{}()! @#$%"&=<>

0SS_MAX_WORD_LEN
0SS_MAX_WORD_LEN = 255

Maximum number of characters allowed in a text fragment.

0SS_MAX_WORD_LEN.
0SS_MAX_WORD_LEN = 255

Maximum length of string data stored in VBossAPI variables. Some functions will truncate strings.

Parsing
Parse (pars,parz) : To dissect (a sentance) according to the grammatical functions of its parts.

PO_STRINGS
PO_STRINGS =0

Parsing Option: Determines whether the parser recognizes String Constants as " and ™.

Qualified Filename
A filename containing all components required to uniquely identifiy a file.

[DRIVE:][PATH\J[INAME][.EXT]

Token

Defined as a coded representation of a given set of characters (or Keyword). By referencing an integer
value for a command, it is possible to create a script execution module independent of the language or
spelling of a Keyword.

Variable Lists
A list of variable declaration Keywords, their data type and current value.

VTFLOAT
VTFLOAT =3

A floating point number.

VTFUNCTION
VTFUNCTION =5

This variable type is provided for completeness. Internally to VBossAPI it is stored as a String
(VTSTRING).

VTINTEGER
VTINTEGER =2

A two byte integer having values of -32767 to +32768.

VTLABEL
VTLABEL =6

This variable type is provided for completeness. Internally to VBossAPI it is stored as a String
(VTSTRING).

VTNONE
VTNONE =0

Variable is un-assigned.

VTPROCEDURE
VTPROCEDURE =4

This variable type is provided for completeness. Internally to VBossAPI it is stored as a String
(VTSTRING).

VTSTRING
VTSTRING =1

A string variable.
Strings are limited to 255 characters in length.

Word

Defined as a set of contigious characters delimited by a non-inclusive set of characters. In other words,
a block of characters separated by one or more differing characters.

